Alternative Transportation modes – The Train System, Part 1

In the first post on this blog we talked about technology and its impact not just with the industrial revolution but also the insidious production of pollution.  In the 1700s the development of the steam engine allowed the rapid development of multiple forms of engine that could work far more effectively than had simple muscle power for most of human civilization.  One of the most obvious of these engines was the locomotive steam engine and the vast network of rails that carried them across immense distances in relatively short periods of time.

While started in Great Britain for use in mining, the onset of passenger and freight rail began in earnest by 1804.  Between 1830 and the 1880s, rail networks sprang up across all of Europe and the North American Continent, all driven by the stream engine fueled by wood and then coal.   It was said that in the USA, you could get to within 10 miles of anywhere you wanted to go in the country by rail since the rail network was so expansive.  In 1869 the last spike was driven in the ground at Provo in Utah creating the first rail line from the Pacific to the Atlantic.  Freight and passengers could now go from San Francisco to New York in less than a week compared to ships that took as much as 3 months and had to navigate the treacherous Cape Horn route at the tip of Patagonia.  If you look at a night sky picture of North America it is interesting to note how the cities and towns west of the Mississippi river to the Rocky Mountains all seem to follow moderately straight lines.  These towns grew up along the rails being laid down and where towns were established at rail fueling stops.  Indeed, one of the many myths used to bring settlers west was that the smoke from the steam train stacks created clouds that produced rain for the westward expansion of farmers.  These emigrants were eager to claim land under the many land laws used to settle the public domain.  The period between WWI and WWII was characterized by a decline in Rail use because of lobbying efforts by Henry Ford and John D. Rockefeller to establish road transportation as the dominant mode of movement in the USA.  One minor side note is the just before WWII the diesel-electric train engine began to appear making the smoky exhaust stacks of coal fired steam engines a thing of the past.  Now the pollution was less obvious, yet still as pervasive in reducing air quality.

In the 1971, Amtrak was created to consolidate the remaining 20 passenger rail companies still left in the USA.  At the time it was the state of the Art in Locomotive passenger travel with some trains running as fast as 125 mph in open long sections of track.  And there it stayed with no further innovation, being more of a tourist transportation system than a passenger movement system.  Freight rail is still popular because of its ability to move multiple cars of heavy freight at the same time.  Air travel took over as the main form of mass people transportation with the less popular Bus lines (e.g. greyhound) taking up some of the slack, and more people using their own cars to get around.  The creation of the Interstate freeway system meant further decline for passenger travel using mass transit.  The American love affair with the automobile and the urge to get places fast are today the main stumbling blocks for innovation in further railroad development.  But are we actually moving faster around the USA?  Airport and freeway backups coupled with automobile gridlock in the cities makes innovative rethinking of how we move around more essential than it has been since the mid-1800s.

Meanwhile in Europe and Asia, rail innovation has taken off and even supplanted air travel for quick efficient travel across the continents.  The famous Shinkansen bullet train in Japan was built in 1964 and a high-speed rail system has become the norm for most industrialized countries.  Think about a plane flight from Denver to Chicago.  Having driven it many times from Loveland I can attest that it is about 18 hours or more of driving.  To fly is obviously quicker, but let’s add up the time it actually takes.  The drive to DIA from Loveland is about an hour with no holdups.  By the time you park your car and get to the airport could add at least another 30 mins on an average by parking shuttle (assume you are not just being dropped off).  You arrive 2 hours early as required to play it safe to get through TSA and to the concourse train and to your gate.  The flight takes around two hours but the airports around Chicago (O’Hare and Midway, or Mitchell in Milwaukee) are not near the city center.  To get from the gates to the outside curb can take 30 minutes.  If you want to get downtown you need to take the airport train or a taxi, which adds another 45 minutes.  Time to get from Loveland to actual downtown Chicago about 6-7 hours by air travel.  And unless you upgrade your basic ticket you are crammed into a tight seat for the actual travel or sitting around in a less than exciting airport.  Now imagine less of the hassles and getting to Chicago in the same amount of time and where you can relax in comfortable seats and walk around without restriction while actually traveling and you are looking at rail travel in the rest of the world.  And the cost of train travel (also electric trains, not diesel) is actually cheaper than air flight, and goes from city center to city center.

To be continued …..

Fossil Fuel Use and Health Issues 3 – Visualizing the Pollution and how it affects our health – Part 2

In the previous post we outlined some of the health problems associated with fossil fuel pollution.  In this post we delve deeper into the actual problems, not to scare you, but to make you aware that this is not something that happens somewhere else.  This is everyone’s problem and is happening where you live, here and now! 

Ground-level Ozone forms when volatile organic compounds (VOCs), mainly from gasoline and diesel combustion, react with the sun’s ultraviolet rays.  It reaches its worst levels in the afternoon and early evening after the sun has been out for several hours.  As such is most noticeable during the summer months but is still prevalent even on a cold winter’s day.  It is a strong irritant to air passages in the throat and lungs causing them to constrict causing difficulty in breathing.   More notable health problems include: aggravated respiratory disease such as emphysema, bronchitis and asthma; wheezing, chest pain, dry throat, headache or nausea; persistent sore throat and coughs that indicate lung damage; compromised immune system; and feeling weak and fatigued with little motivation to get up and go.  The only solutions, besides not creating ground level ozone in the first place, is to stay indoors with a whole house filtration system, move to a remote area well away from major transportation areas, or to walk around outside with a specific ozone filtering respiration mask.     

Particulate Matter (PM) and Wildfire Smoke is a complex mixture of soot and smoke from fires and power stations, metal particles, nitrates, sulfates (from all fossil fuel combustion), and tire rubber particulates, some of which react with sunlight (i.e. oxides of nitrogen – NOx).  What makes the particulates dangerous is the specific size of the particles.  The smaller the particles, the more dangerous they tend to be.  Larger particles can be irritants but are less likely to have long lasting health effects, while fine particulate particles can cause life long and even fatal problems, especially to the lungs and heart.  We hear a lot about ‘fracking’ and the many chemicals (over 650 proprietary chemicals) used during the fracking process, but almost unknown is the grave danger that an come from being downwind of a ‘blowout’ where the exceptionally fine sand (less than 10 micron) used in bulk in fracking, if inhaled, used can cause fatal silicosis.  

Long-term exposure to particulate pollution can result in significant health problems including: respiratory problems from irritation of the airways that causes persistent coughing, difficulty in breathing, and decreased lung function; development of asthma or further aggravation of existing asthma with further development of chronic  respiratory disease in children and adults with already impaired respiration; increases in chronic bronchitis or chronic obstructive lung disease; onset of heart problems such as irregular heartbeat and nonfatal heart attacks leading to increased levels of death in people with heart or lung disease, including death from lung cancer. 

Just like Ozone, the only solutions, besides not creating these PMs  in the first place, is to stay indoors with a whole house filtration system, move to a remote area well away from major transportation areas, or to walk around outside with a specific respiration mask for fine particulates.  Wild fires are on the increase, so being aware of what is happening in your area and knowledge of the wind patterns affecting your area will help to minimize being outdoors when these conditions are severe.  Letting your neighbors know if you have problems and having a medical emergency plan should symptoms become severe is a given.  Most at risk for chronic problems are young children and seniors, although acute symptoms can occur for anyone (e.g. fracking blowout).   Keep an adequate supply of your medications (five days or more) on hand should you suffer from any respiratory ailment.  Listen to local news, weather forecasts and air quality alerts provided by the local air district specialists.  While we gave specifics above for susceptible people, be aware that even healthy and especially active outdoors people can expect to experience temporary symptoms, such as: irritation of the eyes, nose and throat (dry raspy throat); Coughing as if trying to clear the throat; tightness in the chest; and shortness of breath especially during the latter parts of the day.

PMs, Ozone, and VOCs are always present because of the burning of fossil fuels.  Here in the front range they are readily visible when one comes back down from the mountains back to the front range towns.  The brown smog can be seen as a layer that hangs over the towns and cities.  Many athletes comment that they can exercise and run easier uphill at 10,000 ft than they can at 5000 ft in the front range.  The difference is merely the air quality.  Coal fired power plants, fracking, and millions of vehicles burning diesel and gasoline make for poor air quality on the front range.  This can worsen when easterly wind patterns push the polluted air up against the mountains thereby concentrating the pollution and exacerbating health issues.  Clean air is a basic right that we ALL share.  While we make many excuses for burning fossil fuels as an inevitable consequence for our modern way of living, that mindset is completely flawed!  There are alternatives that we all can support that give us the convenience of heat, light and transportation options, that give us clean air to live healthily.  Next blog posts will be about these alternatives we can all support.  After all, what is good about pollution?            

Fossil Fuel Use and Health Issues 2 – Visualizing the Pollution and how it affects our health – Part 1

In the last blog we looked at the great horse poop debates of the late 1890s and how technology helped solve that problem (the growth of the internal combustion engine, but that inadvertently increased carbon emissions and pollution).  The pollution is for most instances relatively invisible (except for the grey and brown smogs that occur as they build up) at the points of emission, and as such is easier to dismiss than the vast amounts of horse poop that once layered the streets deep in excrement.  Now, imagine for a moment, that today, instead of hardly visible emissions, that for each gallon of fuel used, two-pounds of horse poop dropped out of your exhaust pipe – just like it used to do from the rear end of millions of horses.  Now imagine a rush-hour drive with all that poop from all those cars, and then imagine the surface of the road being driven on.  Fortunately, fossil fuel emissions do not look like horse poop – might be more effort to curb them if they did though!   The health problems with fossil fuel pollution are much more severe than those of horse poop.  Yes, the smell of horse poop and urine were quite overwhelming, but the health effects were minor by comparison to Pollution from Fossil fuels.     

When we used to see the black smog’s from burning coal we could appreciate the health problems.  On a bad day when we get modern brown smog’s (photochemical smog) where we cannot see the mountains from anywhere on the front range, we can appreciate the problem, but usually, we are unaware of the pollution.  Without the constant reminder of the pollution (as in horse poop or daily lung choking smog’s) we do not recognize the harm that fossil fuel pollution is doing to our lungs and bodies.  

When we hear the narratives about fossil fuel pollution the one single factor that is talked about is Carbon Dioxide.  It’s all we hear and how it is connected to Global Climate Disruption, which is the focus of all our debates.  Yet, the everyday discussion about the rest of the pollution, of which there are numerous factors, seems almost absent.   The horse poop debate had only horse poop to think about, as distasteful as that was, but what other primary pollutants are there from the burning of Fossil fuels?  The primary pollutants are carbon monoxide, carbon dioxide (yes, there it is), sulfur dioxide, nitrogen monoxide and a variety of nitrogen oxides (NOx’s), Volatile Organic Compounds (VOCs) and a variety of particulates.  When you throw all of that chemical mixture into the atmosphere and then expose it to water vapor, UV radiation, and electrical discharges you get another batch of secondary pollution (Brown photochemical smog – .  These increase the toxic loading of the atmosphere with Troposheric (ground level) and near-earth Ozone (unlike the good Stratosphere Ozone between at 17-50 Km in stopping UVA and UVB), Nitrates, weak nitric and sulfuric acids (primary cause of acid precipitation), Peroxides, and Peroxyacyl nitrates.  Wow, that is quite a list.  And the bad news is that most of these are good lung and eye toxic irritants.  Not enough to kill you immediately (acute pollution) like a bad Hollywood movie (although many chemically-sensitive people do die regularly when these pollutants are above basic levels), but slowly and insidiously (chronic) to impair everyone’s health over many years.   That brown photochemical smog when you see isn’t just spoiling your view of the mountains, but also attacks the lining of your lungs, eyes, and throat, as well as absorbing into your body. 

From the California Health Authorities:

Even healthy people can experience health impacts from polluted air including respiratory irritation or breathing difficulties during exercise or outdoor activities. Your actual risk of adverse effects depends on your current health status, the pollutant type and concentration, and the length of your exposure to the polluted air.  High air pollution levels can cause immediate health problems including:

  • Aggravated cardiovascular and respiratory illness
  • Added stress to heart and lungs, which must work harder to supply the body with oxygen
  • Damaged cells in the respiratory system

Long-term exposure to polluted air can have permanent health effects such as:

  • Accelerated aging of the lungs
  • Loss of lung capacity and decreased lung function
  • Development of diseases such as asthma, bronchitis, emphysema, and possibly cancer
  • Shortened life span

Those most susceptible to severe health problems from air pollution are:

  • Individuals with heart disease, coronary artery disease or congestive heart failure
  • Individuals with lung diseases such as asthma, emphysema or chronic obstructive pulmonary disease (COPD)
  • Pregnant women
  • Outdoor workers
  • Older adults and the elderly
  • Children under age 14
  • Athletes who exercise vigorously outdoors

People in these groups may experience health impacts at lower air pollution exposure levels, or their health effects may be of greater intensity.

Fossil Fuel Use and Health Issues 1 – Personal Responsible Behaviors

The last blog post ended with a short paragraph about Personal Responsible Behaviors.  Most people do not like to hear that kind of thing because it places the burden of solution on them and not on some external entity that they can blame.  The point made here is that it is NOT about blame but about creating solutions.  Once you realize that you personally contribute to a problem or issue you can make a personal choice about your future actions, and in turn help influence others in creating solutions.    

From the academic literature the following is noted: Responsible behavior is the basic layer of sustainability. The foundation of responsible behavior is integrity, which entails honesty, correctness, transparency and confidentiality, combined with a sound risk awareness. Social responsibility is an ethical framework and suggests that an entity, be it an organization or individual, has an obligation to act for the benefit of society at large.  Social responsibility is a duty every individual has to perform so as to maintain a balance between the economy, and the ecosystems in which we live that promote well-being for everyone. 

In our modern world, fossil fuels (FFs) are a simple fact of life – the system as it is currently set up was founded on FFs and still is reliant on our using fossil fuels.  But it doesn’t have to be that way.  There are many alternates to using fossil fuels, but so many of us, and especially those in charge cannot seem to break out of that way of thinking.  

In the 1850s, the western world was on a binge of industrial growth using coal power as the source of power and energy for nearly all the manufacturing and transportation that was occurring.  Factories and steam trains were on a roll ramping up the industrial revolution.  Unfortunately, a major side effect of burning all this coal was choking and awful primary air pollution with black smog’s being an almost common event from the early 1800’s until the 1970s.  In 1899, there was little incentive to stop burning coal and except for ending the industrial revolution, there was really no technological way to abate the issue.   Another major issue of the day was local transportation.  Steam trains were great for moving freight across distances and electrical trams were moving people through the cities on mainline public transport.  The problem was that to get to anywhere off the mainlines you need reliable transport that could move things around.  There were some early electrical trams for people, but local freight and Hansom cabs (horse drawn taxi cabs) still needed horses to pull the many people and thousands of wagons that moved goods and freight around the cities every day.  Each horse can produce about 2 pints of urine and about 15-35 pounds of poop a day on its journey through the streets.

If you have walked around recreational horse riders on a trail, you will notice copious amounts of horse poop on the trail.  And this is from only a few horses in one day.  Now expand that to millions of horses on every street and thoroughfare every day you can only imagine the piles of horse poop and the smell.  It had gotten so bad that policy makers called in scientists to help resolve the problem. Horse diapers (Nappies) were tried but the expense of only moderate effectiveness for so many horses was not feasible.   In the 1890’s, London and New York City both held horse poop congresses to discuss how they would avoid drowning in horsed poop.  It was estimated that at 1894 growth rates, the cities would be 9-feet deep in horse poop by the year 1950!   The solution it turned out had little to do with scientists diligently trying to solve a problem and more to do with businesses like the new automotive industry powered by distillates of oil (gasoline).  (The main use for oil until this point was lubricating oils and kerosene for lamps – most of the other fractionation products were waste.) Both John D. Rockefeller (Standard Oil) and Henry Ford (Ford motors USA) and Karl Benz (Benz-Cie motors Europe) were happy to lead the way.  While the automotive transport helped resolve the horse poop problem it also added to the air pollution with more secondary pollution.  The reason this was more acceptable was that horse poop was a known health problem, and secondary fossil fuel pollution was almost invisible by comparison. 

At the time, there was no shortage of politicians and business men screaming about how the automobile was going to destroy civilization as we knew it with rampant unemployment.  Needless to say, the horse poop problem was resolved through a technological innovation.  It would be another 70 years before the problems of fossil fuel pollution (coal especially and some oil) was partially resolved through technology that could ‘clean’ up emissions (e.g. coal stack scrubbers, catalytic converters, and unleaded fuels).   While air quality has been improved from what it was in 1900, the problem of primary and now, especially, secondary pollution needs the removal of fossil fuels from the whole system.  The good news is that the many primary Renewable energy sources and their secondary derivatives (e.g. Hydrogen and compressed air) can eliminate fossil fuel pollution as a major problem.  Of course, we still have politicians and business men screaming how renewable energy and fuels are going to destroy civilization as we know it – sound familiar? 

We need to look to the future and new technologies can help us do that and at the same time solve many o fhte pollution problems associated with fossil fuel use.  In all the previous blog posts on this site we overviewed the renewable options.  The great advantage of these options is that they are a solution to many of the health problems that we now face because of fossil fuel use.  As more and more people support the use of alternate energy sources, the acceptance of removing fossil fuel use will grow as well.  Fossil fuels got our modern technological world started, but we can ill-afford to ignore the health and societal costs any longer.  Up next is the role of economics in our lives and why we must move to renewable energy sources now.  

Renewable Energy 8 – Compressed Air

Like Hydrogen fuel, compressed air is not a direct renewable fuel but a secondary fuel option, derived as an energy storage technology.  Compressed air has been used for well over a century to drive equipment – think compressed air guns in the building industry.  Compressed air energy storage (CAES) uses electricity to compress air that be used to drive a turbine generator to produce electricity on demand (when needed), or even to drive a pneumatic engine as a transport fuel.      

Electricity and Storage

CAES has been used for many decades with the compressed air either produced via a pump on-site or stored in high pressure cylinders.  More recently, underground caverns (e.g. solution-mined caverns in a salt deposit) are being considered because of their exceptionally large storage capacity. The cavern can be insulated and compressed air stored with little temperature change and heat loss. The low cost of construction for these compressed gas storage systems is an advantage, using the cave walls to help contain the pressure. 

As with all energy sources, CAES is only as cleanly renewable as the fuel used to initially create the energy.  Providing that the energy used to compress the air is from a renewable source such as wind or solar, then it is a clean source.  In the past, fossil fuels sources were often used to compress the air, which both maintains the pollution problems of fossil fuels and greatly diminishes the efficiency of even using compressed air as an alternate energy storage.  The lifetime of these storage systems is expected to be well over a century, which makes their investment a good option to consider.   

The big difference between storing compressed into high pressure storage tanks on the surface or compressing it into caverns is a crucial one.  Air compressed on the surface is simply stored directly in to the storage container.  Compressing air for storage underground requires a multi stage pumping and retrieval system – it isn’t just a large-scale version of a compressed air tank.  This means energy is used to manage the cavern storage systems thereby greatly reducing the efficiency of the system.  Its advantage comes when large amounts of renewable electricity are being produced that can be used to compress the air for larger scale on-demand turbine electrical generation, otherwise the electricity would simply be discharged in to the atmosphere. 

Transport options

A compressed-air vehicle (CAV) is simply a vehicle with a pressurized tank of air as the fuel supply.  The pressure of the air expands to drive a Pneumatic motor.  These kinds of motors have been in use for many decades and have applications in torpedoes, vehicles used in digging tunnels, and early prototype submarines.  More recently, research has been on passenger cars.  The main problem has been the need to show CAES competiveness with other options such as hydrogen fuel.  Air compressed using renewable energy sources is completely non-polluting in both its production and in use as a fuel – nothing is burned, it is just air compressing and expanding.  The only danger from CAES is being too close to a direct rupture of a storage tank, which is quite a minimal risk when compared to other forms of energy storage.  Gasoline and Diesel, the transport fuels we currently accept and use every day, are extremely risky when it comes to potential hazards.  Economists have analyzed the cost benefits of using compressed air in various CAES transport systems.  Some vehicles could have on-board compressor units plugged into the electrical mains (assumes renewable electricity sourced) while others could refill at large compressed air service stations. The cost ranges from less than $1 to $1.25 per each 50 mile driven depending on the storage source.  This makes it comparable to modern transport costs. 

There are several prototype vehicles out there.  The range of the cars or larger transports (trucks, buses, etc…) is only limited by the size of the storage tanks.   The top speed of most current prototypes run only on compressed air is about 50 mph.  This makes them currently ideal for urban use (especially with the zero emissions) but more marginal for long distance travel where time is of the essence.  Tata Motors India was a pioneer with the use of the CAES transport in 2007 and now has a small lightweight model produced with (Motor Development International France) called the ‘Airpod’ that gets about 50 mph top speed with a range of 160 miles.    

There are currently several CAES-hydrid vehicles operating efficiently while research continues on using CAES as a main transport fuel.  According to a recent interview of Loveland, Colorado’s, truck fleet, the fleet manager Steve Kibler, says, that hybrid hydraulic drive system called ‘RunWise’ uses a technique that stores braking energy and hydraulic fluid and then releases it to accelerate the truck up to 35 miles per hour, with less reliance on the engine, Kibler said, “With very little operator training, we were able to achieve 48 percent fuel savings, and a Return on Investment of 6 years on hydrid trash trucks compared to regular diesel trash trucks.

Renewable Energy 7 – Hydrogen fuel and fuel cells.

Often touted as a renewable fuel option, but it is not a direct renewable fuel but a secondary fuel option.  This means that it requires energy to break the bonds of another chemical become useful as a fuel.  The great thing about hydrogen is that burning it as a fuel is almost pollution free – the main waste being oxidized hydrogen – water!  With only minor modification, a standard engine can burn injected hydrogen fuel.  If used in a fuel cell it is completely pollution free, except as I have said several times already within this blog, for the construction of the fuel cell. 

Hydrogen Fuel – While hydrogen is one of the most abundant atoms in the universe, its down side is that it is almost always attached to other atoms e.g. Water (H2O) and methane (CH4) being the two most common sources used.  Deriving hydrogen from methane does little to alleviate the pollution problems associated with fossil fuels, but deriving hydrogen from water can be a renewable source.  Think about it for a second.  You pass a small electrical charge (electrolysis) into pure water and you get hydrogen gas and oxygen, and when you burn the hydrogen (oxidize it) you get water back again with the added bonus of the energy of the oxidation.  Essentially the whole process is non-polluting, depending of course where the energy for electrolysis is derived. The kicker here is that obtaining hydrogen takes energy so at best it is a zero-sum gain.  What makes it valuable though is the fact that hydrogen is a storable energy form that can be used in several ways to produce electricity or to power transportation.  When renewable energy generation sources are used (e.g. wind, solar) and demand is down, the extra energy generated can be used in electrolysis to form hydrogen stores.  (Scroll down for more about storage options)       

Hydrogen Fuel Cell – in its simplest form, a fuel cell is where the hydrogen atom is stripped of its two electrons (anode) and the hydrogen ion allowed to pass through a proton exchange membrane (only conducts positively charged ions).  The two electrons then must flow through a wire to the other side of the membrane to rejoin the hydrogen ion at the cathode, which then oxidizes to form water as the waste.  (Electricity as we use it is simply the movement of electrons in a wire).    

Hydrogen Flammability and storage – When talking about storing hydrogen fuel, skeptics always point to the 1937 disaster of the Hindenburg dirigible.  It is true that hydrogen is a highly reactive gas (oxidizes readily) and compressed hydrogen gas is so reactive it becomes explosive in its speed of oxidation.  Even if compressing hydrogen were the only option of storage (it isn’t – see below), it is still a better option than liquid petroleum fuels.  For instance, a gas tank is ruptured, the liquid flows down to the ground from the tank and the fumes above the liquid can ignite to create an explosive result (note how Hollywood loves to show this is car chases with cars exploding).  Many of the Hindenburg survivors were below the dirigible when it caught fire, because hydrogen is lighter than air (the reason it was used to lift the dirigible) and all the fire went straight upwards from the point of ignition.  Another minor drawback of hydrogen is that volume for volume with energy efficiency it needs more space than say, gasoline.  So, a hydrogen fuel tank would take up four times the size of a fuel tank than a gasoline tank for the same distance to be travelled.  This, however, is a minor nuisance considering that there are at least six ways to store hydrogen, except for high pressure tank storage, that are safe from catastrophic explosion problems

The hydrogen gas can be stored in high-pressure cylinders up to 800 bar (11, 500 psi), however, with more energy use can be used to store liquid hydrogen (safe from explosion) in cryogenic tanks, yet this requires insulated tanks of course.  Hydrogen gas can be adsorbed onto nano-porous materials with a large specific surface area.  The advantage here is that the gas is at atmospheric (ambient) pressure and therefore the gas is non-flammable until released form the adsorbed surface at a slow rate.  Depending on the material used, it may be necessary for the storage containers to be under some elevated pressure (up to 1500 psi, yet still non-flammable).  The gas can be stored in a lattice metal matrix as a metal hydride under atmospheric pressure, again non-flammable until slowly released.  Metal hydrides because of their chemical make-up Metal hydrides because of their chemical make-up are highly effective at storing large amounts of hydrogen in a safe and compact way.  Finally hydrogen can be chemically bonded in at ambient pressure initially being adsorbed at higher pressure and released using elevated temperature, or using metals and alloys are capable of reversibly absorbing large amounts of hydrogen.   volumetric densities of hydrogen are found in metal hydrides.  The chemical bonding technology is showing valuable options in using hydrogen as a future fuel.   

The major advantages of hydrogen as a fuel are that by converting chemical potential energy directly into electrical energy, hydrogen fuel cells avoid the “thermal bottleneck” (a consequence of the 2nd law of thermodynamics).  This makes the generation of hydrogen from renewable energy environmentally friendly.  Fuel cells have few drawbacks and are very efficient, have no moving parts to wear out and produce no pollution. 

Iceland transport Infrastructure – To show the possibilities of using hydrogen as a viable transportation fuel, Shell energy company is helping Iceland move to renewable energy.  With its abundance of geothermal and hydroelectric power, Iceland is leading the way to demonstrating how hydrogen fuel can be used for both storage and especially transport.  The Icelandic bus fleets now use hydrogen fuel cells and the government is ramping up the system to fuel all Icelandic cars with hydrogen fuel.  All locals will be able to go to a regular gas station and fill up on hydrogen like they would with regular gasoline.  Economist insist that moving to a hydrogen fuel economy is too expensive, but Iceland is bucking this fallacy and is fast becoming the model for how renewable energy can exist in highly developed countries.    

Renewable Energy 6 – Biomass energy systems

Burning wood is probably one of the oldest and most common forms of producing heat and energy.  Yet, as anyone who has ever sat around a campfire will attest, the smoke can be problematic.  Photosynthesis is one of the most incredible mechanisms in nature – diffuse light energy from the sun is captured and turned into concentrated chemical energy – the most common of which is cellulose.  Yet, the release of that heat and light causes the release of the chemical materials (carbon dioxide and ash – residues of all the other chemicals) in to the atmosphere.  Of course, some heavier ash is left at the site if combustion.  The obvious problem is that all biomass energy is a reverse of photosynthesis, yet that being said, it still has a lot of potential to power our systems and is completely renewable.  

There are basically four types of biomass in use today – Wood and agricultural products that accounts for about 44% of current biomass usage.  

  • Wood and biowaste from burning dead trees, and waste wood from places like wood mils, forest debris, building demolition sites, and even dried animal manure.  Many people in more affluent areas often have open wood fires that are both esthetically pleasant and can make use of dead wood.  In rural areas the pollution is not severe but in a large town or city would quickly come to produce the smoke smogs that were so devastating to health in the 1700s and 1800s.   Waste wood can be burned directly or it can be processed into smaller pellets for incineration in higher temperature boiler systems.  This is a way to ‘reuse’ wood products, but in the end it is simply an advantageous economic aspect of energy generation and does little to alleviate pollution problems. 
  • Alcohol fuels (like Ethanol or Biodiesel), that are derived from crops like corn and algae.  One of the big problems with using crops is that these are also our food supplies. It’s a strange choice – food or fuel.  In the USA we have a surplus of food, but many developing countries struggle to feed their people let alone think about using what food they do produce for fuel.  Add to the problem of developed countries financing fuel crop growing in these developing countries creates hunger problems for people.  Add to this the problem that growing these crops is also energy intensive technology.  Alcohol is a lot cleaner to burn than fossil fuels – although there is still some pollution – but when the total spreadsheet is framed for Alcohol fuels, the only real option worth considering is that of algal alcohol, but that is still in its infancy.   There is E85 fuel available but a main problem of alcohol fuels is that alcohol can be corrosive to components of an engines fuel injection system thereby requiring more stainless steel and erosion resistant components be added to the engine. 
  • Solid waste incineration (conglomerate biomass – waste to energy or energy from waste)has been around for a few decades.  At first it was a solution to the growing solid waste problem in that it burned trash in traditional coal burning electrical generation plants.  The problems with burning solid waste is that the mixture of materials includes plastics and a multitude of other chemically derived products.   If the waste is not burned at a high enough temperature the resulting emissions can form toxic byproducts that need further treatment making this a potential health and economic problem.  Strict regulations are required to ensure public health safety and sorting trash before it is burned can be a costly process.  One advantage of this is that the emissions tend to be carbon dioxide, which is less polluting than Methane emissions often found from simple biological degradation with a trash dump – the old now rapidly disappearing form of trash disposal in the developed world but still prevalent growing problem in the developing world. 
  • Landfill gas and biogas.  This energy option derived from the methane produced by biodegrading trash or biodegrading wet animal manure.   Most landfills today are aseptic in that degradation is limited because of the compartmentalized nature of how trash is now stored in landfills.  The trash is packed into the landfill and then surrounded by clay.  This restricts the oxidation biodegradation thus keeping the trash in its undigested form for long periods.  What degradation does occur is anaerobic and produces methane.  In order to safeguard the landfill from potential explosive ignition of methane pockets, methane pipes are added to the landfill to vent off the methane.  Rather than vent the methane, many landfills are now capturing the methane for energy generation.  This works for the developing world and big cities around the world because of the immense amounts of trash generated in a consumer society.  In the developing world, however, one of the biggest problems, especially in rural and remote areas is that of over use of wood fuel.  Deforestation has been almost catastrophic in this areas with locals walking many miles a day to find enough wood for cooking and heating.  These people generally tend to be more pastoral and have many animals and hence lots of wet animal manure on hand.  Relatively small Biodigestor units can be given to each family where the wet manure is kept in a sealed tank to digest anaerobically.  The resulting methane each day serves as both the cooking and heating fuel, thereby relaxing the demand for fuel wood.  This has benefitted these rural villages in economic and ecological ways as well.  The reduction of fuel wood use has allowed the depleted forest to regrow, and the time saved in not having to find fuel has given the women especially, time to devote to crafts they can sell at local markets to tourists.  The men have been reported happy with the resulting digested liquid organic sludge as it is a better fertilizer for their crops than simple manure.  Of course, this biogas from biodigestors can be scaled up to community level to produce methane for larger numbers of homes.

While biomass can be a boom for many areas, especially more rural and remote areas, it is difficult to see how it can be scaled up for industrialized systems.  While biomass is renewable it often just substitutes for a more polluting alternative.  It does have advantages in that it usually produces less pollution.  In developed countries, the use of biomass such as algae has a lot of promise to substitute for oil-based fuels without disrupting the existing infrastructure and so as a stop gap option is beneficial.  One of the big aspects of biomass is the incredible amount of non-crop cellulose to be found on the planet.  This has been a difficult problem to crack – how to use cellulose economically, because degrading plant cellulose is not easy. 

There is some recent research that could soon change that.  In a 60 minutes episode on January 6, 2019,  unlikely genius inventor Marshall Medoff talks about a new technique to break down Cellulose cheaply and economically viable.  As Marshall says about his work, “What I thought was, the reason people were failing is they were trying to overcome nature instead of working with it.”  “What MIT trained chemist Craig Masterman has done is help implement Medoff’s novel idea of using electron accelerators to break apart nature’s chokehold on the valuable sugars inside plant life – or biomass. The accelerators can break the cellulose down to simple sugars that cane be used for a myriad number of functions from fuels to foods, and the process can even break down plastics easily.  The process doesn’t disrupt existing infrastructure systems but complements them with low polluting alternatives. 

Renewable Energy 5 – Ocean and Tidal Energy Generation

Before I begin, I will freely acknowledge that this option is not really great for Colorado or anywhere else in the middle of the Continental USA without expensive electrical  transmission systems.  Having admitted that, it is useful to note that according to the National Oceanic and Atmospheric Administration (NOAA) the official shoreline of the USA is estimate to be 95,471 miles.  That is a lot of constant renewable energy waiting to be tapped.  Unlike coastal wind towers that stand above the water’s surface capturing variable wind currents, most ocean power lies out of sight (an important consideration for those people worried about esthetic vistas) below the surface – wave power may be more visible depending on the technology used.   Again, this is pollution free energy generation once the technology has been built and set in place.    There are three energy sources from oceans:

  • Tidal power: The twice-daily flow of tides (rising and falling of seas due to the moon’s constant gravitational pull) creates energy of motion that can be converted to electricity. Even on a calm day the tides roll in and out with rhythmic constancy (predictable and stable).  Current technology has three different ways to utilize tidal energy: tidal streams, barrages, and tidal lagoons. In essence, what this means is that tidal rises and falls are captured in a system that resembles hydroelectric power, but unlike terrestrial falling water hydro, the incoming and outgoing tidal energy can be utilized.  For most tidal energy generators, turbines are placed in tidal streams and since water is more dense than air, tidal energy is more powerful than wind energy for spinning underwater turbines.
  • Wave power: This is very similar in many ways to tidal power, in that the ocean energy is used to spin a turbine, but in this case the actual wave energy is usually used as an indirect motion to spin the turbine. The incoming waves can enter a chamber where the waves compress the air in the chamber, which is then forced through an opening to spin the turbine in a housing above the water level (often on the edge of the shore).  The air forced in and then pulled back by the wave power can spin the turbine with a gearing shifter that keeps the turbine spinning in the same direction whether the air is moving in or out of the chamber.  Wave energy is produced when electricity generators are placed on the surface of the ocean. The energy provided is most often used in desalination plants (an important potential for clean fresh water in coastal regions), power plants and water pumps. Energy output is determined by wave height, wave speed, wavelength, and water density.
  • Thermal power: This technology exploits differences between warm water (usually at the surface) and cold water (usually down below 15 meters). While not yet commercially developed, the potential is enormous.  The technologies under study can use warm surface water that is piped into facilities where it evaporates volatile substances (e.g., ammonia) to turn turbines.  Cold, deeper water is then used to condense the substances and start the cycle again.  Ocean Thermal Energy Conversion (OTEC) project research has been run in Hawaii and elsewhere, but there are no commercial operations yet, but The OTEC plant located in’s Hawaii’s NELHA plant (in Kailua-Kona) could become commercially operational in the near future.

Renewable Energy 4 – Geothermal Energy

This is not a new option, but it is one that receives little attention in the U.S.  Geothermal energy is simply using the thermal energy generated and stored in the Earth.  For technical reasons, there are two types of Geothermal:

1.  Volcanic based (from deeper underground) and heat stored in the ground nearer the surface (stored heat within 250 ft of the surface).

Hot magma chambers and volcanic activity that lay relatively close to the Earth’s surface can heat deep water tables creating thermal vents.  These hot thermal water vents often show at the surface as hot springs.  Throughout the western U.S. there are many hot springs attesting to the volcanic potential below the western part of the country besides the incredible volcanic crucible known as Yellowstone National Park and the Volcanoes of the Pacific North West and Alaska.  How much of the volcanic activity can be considered for energy use potential is still debatable since tapping into natural spring areas and national parks could inadvertently disrupt the systems that make those parks economic tourist attractions.  Evidence from Iceland shows that many areas not in the main tourist areas could be utilized without affecting the underground systems.  Iceland is sat astride the Atlantic Oceanic Ridge (tetonic divergent boundary), and is ideal for geothermal energy generation.  Here super hot thermal vents are piped to the surface where the steam is used to spin turbines generating electricity.  The piped steam and water used is within a closed system and so is recirculated back into the water table at the same level so as to maintain the water pressure and volume at that level, ensuring a sustainable system.

2.  The non-volcanic geothermal, however, is much different since it uses heat variation to generate heat and cooling and not electricity per se. They have been in use for over 60 years already.

If you have ever gone in a cave you will notice that whatever the weather outside the cave, the temperature inside the cave is usually around 56oF.  Once you get about 8 feet below the ground in most parts of the world, the ground temperature remains stable at this 56oF.  Of course in the arctic regions there is permafrost or ice laying over the surface making non-volcanic geothermal impractical.   In utilizing this kind of geothermal, the temperature underground near the surface is used to heat – using a heat pump in cold weather, or cool by direct exchange of cooler underground air in hot weather.  Just like a septic leach field, pipes can be buried in the ground by the home (as vertical loops, horizontal loops, slinky loops, or even pond loops in wet areas) with enough air volume to allow the heat pump to work effectively as an HVAC system.  These pipe systems have a very small footprint for individual home use and are buried under the soil allowing gardens above them once installed.  Neither of the Geothermal energy systems requires any need for combustion products, using only natural energy already in the Earth.

While this renewable energy source seems ideal, it also, like wind and solar, is still not perfect, even if it has no pollution except from the materials to utilize it.

The Positives of geothermal HVAC Generation and Geothermal Energy

Geothermal currently accounts for only about 2.5% of the worlds electrical generation, so has immense potential for expansion.  While being renewable, it is also sustainable since it is a stable continuous 24/7/365 source of energy.  Non-volcanic Geothermal’s best advantage is that it occurs almost everywhere locally, since below 8-12 feet the ground is resistant to the seasonal heating and cooling that occurs in the air around us. A heat-pump is incredibly efficient. Most regular furnaces are about 75-90% efficient at best, while the heat-pump averages 400%. They require less maintenance than a regular furnace.  The initial investment needed to install the ground pipes connecting the house via the heat-pump has a reasonably fast return on investment (ROI).

Volcanic Geothermal electrical generation can be hooked into the electrical grid in the same way as any other turbine produced electricity.  Iceland has shown this works well, cheaply, and effectively.  Whether we can work volcanic geothermal in the western U.S. with the same success is still a work in discussion (se below).

The drawbacks of Geothermal Energy Generation

As inferred above, one of the biggest problems with volcanic geothermal electrical generation is that of siting.  Most of the hot springs in the U.S. tend to be tourist destinations and tapping into the thermal vents may disrupt the course of these springs.  This would be especially true in area like Yellowstone National Park where the geothermal features are a central draw of the park.  In areas using volcanic geothermal electrical generation (e.g. New Zealand, Germany and Iceland) the use of some hydraulic fracturing to expand the thermal vents can cause multiple minor localizes earth quakes.  While only a nuisance, the data from fracking used in Methane production shows these quakes to be of concern.  The current cost of developing a geothermal power plant are about 2.5 times higher than for the same energy produced by wind energy.  In the USA it account for only about 1% of the current total energy.  While it has potential, as part of a portfolio of energy, its high cost and siting issues make it more a longer-term option.  Geothermal vents must be at 350oF to work effectively to produce the steam required for spinning the turbines.  The potential for earthquakes to shift the thermal vent courses make long-term reliability a concern, especially when the generators may be close to tourist areas.  Such geothermal generation would by definition have to be sited in remote areas making both them and the electrical transmission expensive.

As a sum up, using non-volcanic generation with a homes HVAC system is the most optimum use of capturing the Earth’s potential.  Tapping in to the volcanic potential of the U.S. is unlikely to be a firm option in the foreseeable future, although research is on-going to identify technology that can capture this free energy option literally below our feet.

Renewable Energy 3 – Wind Power  

Windmills have been used for centuries, with the first wind turbine for electricity developed in the late 1800’s.  Winds are caused by rotation of the earth, solar heating of the atmosphere and the earth’s surface. We can harness wind energy and use it to generate power as long as sun shines and wind blows.  Wind tower electrical generation is one of the fastest energy, and renewable, generation systems today.  While there are positives and some drawbacks to wind electric generations, it is a lot like solar in that the actual generation of energy is clean with no pollution during or afterwards.  The wind towers however do have to be built and that requires a lot of minerals that need to be mined, smelted and then all used in manufacturing the towers.  The wind blades are made of fiber-reinforced epoxy or unsaturated polyester.  The towers themselves are primarily made of steel – earlier ones as a steel frame tower and modern ones as steel tubular towers.  The turbine, of course has a copper coils – about 4 tons of copper for each MW generation capacity.  If you drive by a wind field you will notice that each tower uses three blades.  This is optimum for minimum drag (reduced wind resistance) and also to prevent (gyroscopic precession – wobbling) although some smaller tower do use just two blades.  Current towers have a life-time expectancy of 20-25 years before they have to be reconditioned and or replaced.

Obviously, when the wind doesn’t blow the tower isn’t generating anything.  Wind turbines work between wind speeds of 5-55 mph.  Below 5 mph they do not have the momentum to start up and above 55 mph the stress of a fast turning shaft can damage the system.  If a high wind above 55 mph do occur then the rotor is locked down.  Newer turbines have gearing systems included in the nacelle (the generator part at the top of the tower) that can maintain a constant rotation speed for optimum efficiency.  The nacelle and blades can swivel on top of the tower to orientate into the wind to capture the maximum amount of energy.   When siting multiple wind towers, the turbulence occurring from the blades has to be taken into account so you will notice that they are evenly spaced where possible – a lot has to do with the land ownership and where towers might be sited.  In some places like Iowa, the towers are more randomly placed as some farmers will not have towers in the land.  Wind fields are specifically located after extensive long-term evaluation using anemometers that measure wind.  The whole of the USA has been surveyed and optimum locations are well established.

The Positives of Wind Energy Generation

It is a non-polluting, clean and renewable source of energy, local, and free.  You only need the technology to capture it.  It is cost-effective with good return on investment (ROI). Each tower has a small footprint (250 square feet) plus a narrow access road.  Once built, the disturbed land around the tower can be reused for farming and grazing.  Land owners can create substantial earning for siting a tower.  The appearance is seen by many as an attractive statement of renewability, although there are those that consider them an eyesore – beauty is in the eye of the beholder.  Currently, wind energy accounts for only about 2.5% of the worlds electrical generation, so has immense potential for expansion.

The drawbacks of wind energy generation

Wind turbines require a consistent source of wind, and even though areas in which they are sited tend to be reliable, calm periods are always problematic.  While wind cannot be a primary source at this time, it can be a major contributor as new storage systems are developed and integrated into the grid system.  The borders of a wind field can be problematic for wildlife, especially birds and bats that can be hit by wind blades as they rotate.  Since wind towers by necessity require open areas the numbers of birds that may be harmed is somewhat reduced.  Wind towers do generate some noise as they cut through the air of about 50 decibels (consider that the tips of the blades may be travelling at 200 mph as they move around), which is about equal to someone talking next to you.  As stated above, they can be viewed by some as eyesores that tarnish the beauty of rural landscapes. Extensive Investment is necessary and ROI may not be fast enough for some groups.  As with any technology that people may object to, there are some fears about safety of wind tower generation.  There is the possibility that the towers could be damaged in a storm and threaten the health of people immediately nearby if the blades tore loose from the nacelle.  Since these wind fields are only economically placed at key wind locations, there are transmission lines needed, but this is true for any electrical generation site.

Current research and development of wind energy generation

One way to reduce bird and bat deaths is locating wind fields not in major raptor areas or migration flyways.  Federal wildlife officials are working with the industry to finalized stricter siting practices.  The use of radar technology helps wind field operators know when flocks or migrations of birds or endangered species that are tagged are approaching at heights below 400 feet (the top height of the blades) the field allowing the towers to be temporarily stopped.  Ultrasonic acoustic signals on the towers have been found to deter bats from entering a wind field zone.  There has also been some dopler signal and bright light research that similarly deters birds, but research is still ongoing.  Other biological research studies show that bats are less active in the wind field zone when wind speeds are above 5.5 meters per second, so wind tower operators can stop the generators with lower speeds without affecting power generation output too much.  Recent studies have found that painting the towers in a variety of colors or painting the blades in red stripes seems to deter birds from a wind field zone.  Of course, we are used to seeing the typical wind tower with three blades, but they do not have to be like that.  There is much research in using vertical axis or FloDesign turbines where the rotors are contained in a housing making bird and bat strikes unlikely.  What is important to note is that much biological research is ongoing to minimize or eventually remove this problem to wild life as the positive potential of wind energy is utilized more.